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Abstract-A general problem is formulated of electroconvective heat transfer and the problems of this 
kind are classified according to motive force types and to nonuniformity of electrophysical parameters. 
Typical cases of nonuniformities are considered, namely, thermal, mechanical and those due to the 
electric field itself. A qualitative theory is developed covering all the flow patterns which correlates 
exnerimental data on electroconvective heat transfer in homogeneous and disperse media and on corona 

discharge in gases. Experimental data agree with theoretical predictions. 

NOMENCLATURE 

volumetric density of the medium [kg/m3]; 
dynamic and kinematic viscosities, 

respectively [N . s/m’, m’/s]; 
thermal conductivity [W/m deg] ; 
thermal diffusivity [m’/s]; 
specific heat at constant pressure 

[J/kg. deal ; 
= v/a, Prandtl number; 
absolute dielectric constant [F/m]; 
specific electrical conductivity [Q- ’ m - ‘I; 

= s/a, relaxation time [s]; 
characteristic time of induction change in 

external electric field; 
volumetric expansion coefficient [deg- ‘I; 

= _$ /J=;!Z, fl*= _Z, 

temperature coefficients of dielectric 
permittivity, specific electric conductivity 

and relaxation time [deg-‘1; 
ionic mobility with the sign of corona 

electrode [m'/V . s]; 
radial coordinate [ml; 
thicknesses of velocity and thermal boundary 

layers [m] ; 
characteristic dimension (corona wire length) 

[ml; 
= 2r,, internal diameter of cylindrical 

(spherical) condenser [ml; 
pressure [N/m*]; 
velocity and absolute temperature 
distributions [m/s; “K]; 
volumetric density of free charges [k/m3]; 
electric current density vector [A/m’]; 
electric field potential [VI; 
electric intensity [V/m]; 
total discharge current through a medium 

CAli 
discharge current per unit length of corona 
wire [A/m]; 
deviations of temperature and electric 
potential from equilibrium disturbances 

C”K, VI; 

409 specific heat flux without electric field 

W/ml ; 
~,a,,, heat-transfer coefficients with and without 

electric field [W/m’ . deg]. 

Subscripts 

0, refers to equilibrium distributions, 

characteristic values; 

s, refers to internal plates of cylindrical 

(spherical) condenser; 

f9 refers to a medium; 

W, refers to the heat-transfer surface; 

E, refers to an electric field. 

INTRODUCTION 

VARIOUS hypotheses have been set forth [l, 21 con- 
cerning the nature of phenomena involved in heat 
transfer in electric fields, among which that on the 
electric fields to increase molecular heat conduction. 

However, study of dielectric fluids in the field of 
different strengths has revealed their motion which has 
left no doubt that it is the electric convection that 
intensifies the effect of an electric field on heat transfer. 

Electric convection and, mainly, its contribution to 
convective heat transfer is treated in quite a number 
of works, mostly experimental [3-91. Nevertheless, its 
mechanism remains unclear as yet in many respects. 
Difficulties with the solution of many practical prob- 
lems and understanding of the physical nature of 
electroconvective phenomena arise due to electrization 
of the fluid when in contact with the electrodes 
forming the field. Up to now this question remains 
problematic [lo]. 

It will be shown below that formation of a free space 

charge p = VD # 0 under the action of an electric field 
is closely connected with nonuniformity of the funda- 
mental, in this respect, parameter 7 = E/(T which is the 
relaxation time of electric effects in the medium. Since 
dielectric permittivity E and electrical conductivity u 
which affect this parameter depend essentially on tem- 
perature, this, when assuming no other nonuniform- 
ities, may be used to find a temperature distribution 
of the density of a free charge and electric forces in 
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the medium. The hydrodynamic effects involved will 
be referred to as electrothermal, thus emphasizing two 
conditions indispensable for their onset : availability of 
an external electric field and of thermal nonuniform- 
ities. 

The above difficulties appear in the case when 
nonuniformities of 7 are due to the electric field itself 
which causes electric concentration, ionization, electro- 
chemical phenomena in the vicinity of an electrode. In 
these cases before investigating electrohydrodynamic 
phenomena study should be made of the physical 
mechanism of charge formation in fluid. The exception 
is unipolar conduction, when the charge carriers of the 
same sign prevail in the fluid, and the Coulomb force 
can be found directly by the current density j and 
charge-carrier mobility k. 

In view of the above, we studied the types of electro- 
convective heat transfer in homogeneous and disperse 
heat-transfer fluids (emulsions and suspensions) as well 
as in case of unipolar conductivity, particularly, with 
corona gas discharge. 

2. GENERAL STATEMENT 

Fluid is considered viscous and incompressible; the 
fields of physical quantities are assumed, as it is 
customary in mechanics of continua, to be averaged 
over finite volumes containing a great number both of 
molecules and of disperse particles as far as emulsions 
and suspensions are concerned. It is fairly evident in 
the iatter case that the particle concentration should 
be sufficiently large while the size of particles is small. 

For the above approximation, convective heat trans- 
fer in an electric field is described by the system of 
equations for electric convection in homogeneous 
fluids : 

y g+(vv)v = -VP+f~+f~+yg+fp*v; vv=o; 
[ 1 

aT aw) 
,t+~VT= aV*T+aE*/c,y; j= crE+pv+--; 

at 

Vj=O; p=V(eE); E= -vq; (2.1) 

closed for the unknown functions v, P, T, cp, p, j, E, 
f = fl + fi . For each specific problem it is indispensable 
that the fluid properties (y, E, 7) -+ F(T, P, E) and ap- 
propriate boundary conditions should also be given. 

An important class of solutions to system (2.1) are 
steady-state solutions in case of vanishing time deriva- 
tives, particularly in the electric field equations. This 
means bias currents are negligible compared, for 
example, to continuous conduction currents 

(2.2) 

where t,, is the characteristic time. 
Inequality (2.2) becomes the stronger, the less 7 is, 

i.e. the greater electric conductivity. However, we shall 
also set an upper limit to the value of u by the require- 
ment of a negligible contribution to Joule heat to the 

heat conduction equation : 

(uE*/c,y)/alV*TI - oE212/Ms K 1 (2.3) 

where 0, is the characteristic temperature difference. 
Inequalities (2.2) and (2.3) impose a two-side restriction 
on the electrical conductivity 

EJto << rJ cc IeJEv. (2.4) 

We shall call heat-transfer fluids that meet conditions 
(2.4) low-conductivity ones. In a d.c. field, among such 
turn to be a transformer oil, kerosene and many others 
for which 7 5 10-l s and which in practice are viewed 
as insulators. 

The inequality reverse to (2.2) 

7/t0 >> 1 (2.5) 

indicates that the electroconductive properties of the 
fluid may be neglected. Hence, condition (2.5) points 
out a particular class of ideal dielectrics, for which 
CT = 0, p = 0. In an a.c. field (50 counts/s) the above 
fluids cannot be considered low-conductivity ones and 
should be referred to dielectrics. 

Consideration of two classes of fluids is expedient 
mainly in view of the fact that when 7/t. >> 1 electric 
convection and its intensifying effect on heat transfer 
are caused by the force f2 = - 1/2.!?*v~. Taking into 
account that convection can be excited only by vortex 
forces (rot f # 0) [4,11,12] the conclusion is drawn that 
if heat transfer appears to be enhanced (when E < 
10 kV3 cm) only in a nonuniform field (Ve x VE2 # 0), 
this is due to the action of fi . 

In low-conductivity fluids besides f2 the purely 
Coulomb force fi = pE acts which in most cases 
dominates over f2. Density of free charges is un- 
ambiguously related with the relaxation time gradient 7. 

Indeed, after substituting current density j into the 
continuity equation Vj = 0 and accounting of the 
Ostrogradsky-Gauss theorem we obtain: 

ap aEV7+p+7vVp+rz = 0. (2.6) 

Assuming 7 = const and multiplying equation (2.6) by 
p, after integration over the fluid volume enclosed by 
impermeable walls, we find 

jp2dV= Jp2~ojmi-2r~~ (2.7) 

where p(0) is the space charge distribution at the 
moment when the field is imposed at t = 0. 

Formula (2.7) implies that if the fluid is electrically 
charged, the field is imposed, i.e. p(0) # 0, its charge 
disappears in the field at t + co, p + 0. But if the field 
is imposed on a neutral fluid, as it actually happens 
in practice, then p = 0. Thus, when 7 = const, equation 
(2.6) implies also the reverse situation: if V7 # 0, then 
p f 0. Hence, nonuniformity with respect to 7 is the 
necessary and sufficient condition for free space charges 
to emerge in the medium under the electric field. 

Thus, for analysis and solution of equations (2.1) it 
may be useful to consider separately ideal and low- 
conductivity fluids. It should be taken into account 
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that according to equations (2.6) and (2.7) the charge 
density p and force fl are caused by nonuniformity 
with respect to r while force f,, with respect to E. 
Further classification of the problems and investigation 
of the heat transfer fluid nonuniformities (thermal, 
mechanic or those due to the field itself) are necessary. 
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together with equations (3.4), (3.5) and the suitable 
boundary conditions constitute a closed system of 
equations describing electrothermal convection and its 
contribution to heat transfer at mechanical equilibrium. 

In case of ideal dielectrics such a problem is essen- 
tially simpler because f; = 0 and the field equation 
(VD = 0) contains no convective term 

3. ELECTROTHERMAL HEAT CONDUCTION 

Consider convective heat transfer in homogeneous 
fluids, when to a first approximation one may restrict 
account of electrohydrodynamic effects only to those 
which are due to temperature nonuniformities. In this 
case density of electric body forces can be expressed 
in terms of distributions of electric potentials cp and 
temperature T: 

fl = pE = Vq. V[&(T)Vp-j, (3.1) 

f2 = -@*VE = i_$,(Vcp)*VT. (3.2) 

It seems useful to further consider the problems in 
two aspects on the basis of electrohydrostatic stability, 
when heat-transfer enhancement can be related with 
electrothermal convection arising at mechanical equi- 
librium, and from the boundary layer viewpoint. 

In the former case electric force f = fl + f2 is ex- 
panded into a power series of temperature disturbances 
0 = T- To and of electric potential U = cp -cpO near 
equilibrium 

ff=f-f, = gJou+($);+... (3.3) 

where the expansion coefficients in a general case are 
operators affecting 0 and u, respectively. For a linear 
approximation, when r/to <I 1, expansion (3.3) assumes 
the form : 

The case of low-conductivity fluids so far remains 
disputable [13,14]. Mathematical difficulties make it 
necessary to thoroughly analyze the formulated equa- 
tions, primarily the expressions for motive forces, 
(3.4) and (3.5). Such an analysis has revealed [12] that 
in all practically important cases we can confine 
ourselves to the first two terms and the last one in 
equation (3.4) and the first two terms in equation (3.5). 
The only exception is the problem of electrothermal 
convection in a plane condenser with T/to >> 1, which 
may however be omitted from consideration at all 
because its solution is known [14]. Equation (3.7) can 
also be simplified as [ 121: 

-&EoVB+VZu = 0. (3.9 

t; = &oScB,Eo(A,Eo)e-&oS,Eo(EoVB) Then, the sum of the second and last terms in equation 

+E~B~(A~E~)VU+E~S,E,(A,VU) -q,EoV2u (3.4) (3.4) is -eo/?~Eo(EoVB). 

Equilibrium distributions of electric potential 
(Vq, = -E,), temperature (VT, = Ar,), and of other 
quantities are assumed to be known from the solution 
of the electrohydrostatic problem. 

The following approximation to f’ = f; + f; turns to 
be cubic with respect to small parameters (temperature 
coefficients) 

With regard for the above, we formulate the following 
dimensionless system of equations for the case of 
electrothermal convection in classical symmetry con- 
densers when z/to cc 1 

Pr-’ p+ (vV)v = 
[ 1 
+ Ra.@.k+V*v; Vv = 0 

~+~.~+vve = v*e. 
In 

Therefore, as in the case of thermogravitational con- 
vection, a linear approximation of disturbance (motive) 
force f’ seems to be sufficient even in the general 
nonlinear theory of electrothermal convection. 

Linearized equations of motion, heat conduction and 
electric potential (div j = 0) 

o,,fi,(AOVu-EoVO) +a,,V*u 

-sols,2(EoAo)(Aov) = 0 (3.7) 

- fl,(A,Vu - EoVB) + V*u = 0. (3.8) 

The most interesting recent researches [13,14] in 
the field considered deal with solution of the boundary- 
value problems (though in a somewhat different math- 
ematical form) for the simplest model, i.e. a plane 
horizontal condenser at constant (different) tempera- 
tures and potentials on its plates. Thus, on an electronic 
computer an exact solution to the problem [14] for 
dielectrics has been obtained and it has been shown 
that the electric field causes instability (monotonous) 
at quite appreciale strengths (E 2 lo* kV/cm). This 
indicates a negligible contribution of forces f; to heat- 
transfer enhancement observed experimentally. 

Here n = 0, 1,2 for plane, cylindrical and spherical 
symmetries, respectively; e is the unit vector which, as 
follows from the electrohydrostatic equation, is 
common for the equilibrium vectors E. = eEo, VT0 = 
eAo . The subscript s means equilibrium on the surface 
of the internal condenser at n = 1,2. 0, = A,r, is 
assumed to be a temperature scale if To # const (which 
is possible when II = 0, e + k as well as when n = 1,2; 
but Ra = 0). 0, = 0, if To = const. 
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Besides Rayleigh and Prandtl numbers, the system 
of equations (3.10) contains two more similarity num- 
bers for thermoelectroconvective phenomena 

Et = 
~oBr%r:E: 0s 2 0 ?I’().v.a 00 

(3.11) 

&c”’ = 

x [(BL+286)ASrS+nr”-l]. (3.12) 

They characterize the contribution of purely 
Coulomb force f; and pondermotive force f; to heat- 
transfer enhancement, while 

Et/G”) - f;/f; 2 /IrIp, >> 1 (3.13) 

since usually p,//lE _ lo2 + 103. 
Substitution of Et = O(p = 0) into system (3.10) and 

replacement of 
jj-J”’ _+ _Q’ 

~oA&rfEf =- 0 5 2 .(/?,A,r,-n?J-1) (3.14) 
yova Eo 

give the system describing electrothermal convection 
in ideal liquid dielectrics. The generalized parameters 
(3.11), (3.12) and (3.14) are weak functions of the 
coordinates in terms of equilibrium quantities. For the 
Boussinesque approximation they may, however, be 
assumed constant and equal to some volume averaged 
values. The boundary conditions for 0 and v for the 
system of equations (3.10) coincide with those for 
natural convection. 

The advantage of the electrothermal convection 
problem in the form of equation (3.10) is not only its 
simplicity against the initial equations but also the fact 
that individual problems are directly reduced to the 
case of natural convection with a modified Rayleigh 
number. 

It is significant that in ideal dielectrics (p = 0) the 
motive force f; is proportional to the temperature 
disturbance as well as the Archimedian force. That is 
why the onset of instability is monotonous [IS] and 
electrothermal convection has much in common with 
natural convection. According to equation (3.13) for 
low-conductivity fluids the system of equations (3.10) 
may incorporate only the term with Et. The motive 
force f; in this case contains a temperature disturbance 
derivative with respect to the coordinates in the direc- 
tion of the electric field that results in oscillatory 
instability. It can be shown by the energy method 
[16, 173 that such disturbances develop whose fre- 
quencies exceed a certain critical value 

On the one hand, this proves the possibility of existence 
of internal thermoelectroconvective waves and, on the 
other hand, indicates that local heat transfer in the case 
considered (T/r = const) is unsteady, which has been 
verified experimentally [lS]. Here, the extent to which 
the electric field affects convective heat transfer both 

in uniform and in nonuniform fields can be estimated 
by: 

e.g. for transformer oil (E z 2 x lo-“, /& - 10-r deg-‘, 
E - lo5 V/m, I - 10-l m) q_ N 1 if E m 1 kV/cm. This 
implies that at natural convection with the strengths 
considered the enhancing effect of the field on heat 
transfer becomes appreciable. This conclusion agrees 
with numerous experimental results and, hence, ther- 
mal nonuniformities in homogeneous fluids at r/to c< 1 
are very important for heat transfer. 

Since in ideal dielectrics this effect should be lower 
by some orders and in uniform fields should vanish 
we, before considering the boundary-layer heat transfer, 
shall analyze the case of low-conductivity fluids (2.4) 
which is primarily interesting for correlation of ex- 
perimental data as well as for their application to 
engineering practice. 

The main ideas of the boundary-layer approach with 
reference to heat transfer from an electrically heated 
charged vertical plate have been developed in [19]. 
We consider ordinary boundary-layer equations [20] 
with the difference that a heat transfer surface in a 
horizontal flow (OX) is at the same time an electrode 
which generates an electric field E = kE,, E, = E = 
const normal to the surface. The entrainment of electric 
charges by a fluid flow may be very essential in this 
case. Therefore, we shall have to use initial equations 
(2.1) which in a steady-state case, with regard for 
equation (2.6) assume the form: 

y(vV)v = -VP+pE-)E2Vs 

Vv = 0; VW = aV’0; p+rvVp = -~p,EvtI (3.16) 

The field strength E is given, v, P, 8, p; 8 = T- T, are 

unknown where T, = const is the temperature at 
infinity. 

Within a thin boundary layer the field is considered 
uniform, while outside it the fluid is homogeneous. 
Thus, the force f2 may be written as E’VE = V(eE’). 
From equation (3.16) it follows that 

= -~+pE+,pgfl+,(~+~); (3.17) 

where 
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The usual procedure of comparisons and estimations 
of the terms in equations (3.17) used in the boundary- 
layer theory with the assumption that the boundary- 
layer thickness 6 is much less than the characteristic 
dimension 1 in the flow direction leads to the equation: 

a9 
z = PE+YS& (3.18) 

whereas in the ordinary boundary-layer theory 

a9 
x = 0. 

Integrating equation (3.18) from z to cc gives: 

.9(x, z) = - 
s 

m (pE+$gB)dz+B(x, co), (3.19) 
I 

where 9(x, co) is the potential flow pressure to be deter- 
mined from the Bernoulli equation 

9(x, co) = - yu2/2 (3.20) 

u is the velocity in the potential flow due to either the 
external hydrodynamic pressure or relative motion of 
the body itself in the fluid. 

With regard for equations (3.19) and (3.20) the 
boundary-layer equations assume the form: 

where 

1s 

l/2 
w= - ; =a (pE+yjIgB)dz+u’ . 

I 
(3.22) 

The first summand in the braces is a correction to 
the potential flow velocity caused by the body forces 
within the boundary layer. These forces, though normal 
to the flow, change the velocity in the main stream 
because of their dependence on the longitudinal co- 
ordinate x. Thus, w is the total velocity in the potential 
flow. 

As in the case of forced motion we may introduce the 
Reynolds number (Re,), as the characteristic quantity, 
containing a certain effective value derived from ex- 
pression (3.22). Introduction of scale units from the 
relevant formulas of the boundary-layer theory and 
transition to a dimensionless form in equations (3.21) 
shows that one of the main conclusions of the theory 
that the boundary layer thickness is inversely propor- 
tional to the square root of ReE approximately holds 
although the body forces are taken into account. Hence, 
heat transfer in a laminar boundary layer in the 
presence of an electric field may be approximated, as 
usual, by dimensionless equation [21] : 

Nu, = F(Pr)Rez5 (3.23) 

where F(Pr) is a function of the Prandtl number 
depending on particular conditions of the problem; 
usually F(Pr) - Pr1/3. 

The effective velocity should naturally incorporate 
the mean longitudinal component of the true velocity, 
for which either the mean over the bulk layer total 
velocity E or its order w - w0 may be assumed. Both 
definitions will coincide to within a numerical factor, 
so the choice of this or that scale is of no practical 
importance. 

Taking notice that the integrand in equation (3.22) 
is positive (0 = T- T, > 0, pE x -@,(EVB)E > 0), 
we may write: 

w2 = +-E+yBgf7)c3,+U2(x) (3.24) 

where the bar means averaging over 0 < z < 6r (when 
z > 6r, p, 0 = 0), 8r = f(Pr)G is the thermal boundary- 
layer thickness, f is the Prandtl number function 
(f-F-’ - Pr-113). 

The value of the mean charge density from expression 
(3.24) is found from the averaged continuity equation 

P+rZ&JR) = E&EeJ& (3.25) 

where 0, = fI(x, 0) = T, - T,. The derivative in the 1.h.s. 
of equation (3.25) is positive because convective charge 
transfer in the boundary layer should involve reduction 
of its mean density. Then, replacing (d/dx)(pPJ -+ 
pPJl, which corresponds to the linear approximation 
of the dependence of (pFX) on x and also PX = W, and 
taking into account 6 - lRe,“2, we finally obtain: 

’ = f(Pr). 1[1 +f(Pr)zvReE/12] 
(3.26) 

ReE = RepI = 12/fn 

the charge density p reaches its maximum 

(3.27) 

(3.28) 

The presence of the maximum is accounted for by the 
fact that at small ReE the temperature gradients and p 
are small too. At large ReE the density of a charge starts 
to decrease due to its entrainment by a convective flow. 
Relations (3.27) and (3.28) determine the conditions 
under which the maximum field effect on heat transfer 
in the boundary layer should be expected. 

Taking into account expressions (3.24) and (3.26) we 
define the order of the Reynolds number: 

ReE = 
GTE 

f’Gr + Re “’ 
I+ fiV&?E/~2 + ,,/(Re,) 

(3.29) 

where 

Gr, = .&tIs12E2/yv2, (3.30) 

Gr = p&13/v2 (3.31) 

The knowledge of the effective Reynolds number 
allows, according to equation (3.23), approximation of 
the dependence of the Nusselt number on the gen- 
eralized parameters entering into equation (3.29). 
Equation (3.29) expresses the general laws and 
peculiarities of a complicated process of heat transfer 
at mixed convection. 
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Expression (3.29) is rather complicated, therefore, to 
illustrate the effectiveness of the above formulas we 
shall restrict consideration to some special cases. In 
the absence of gravitational and electric convections 
(Gr, = 0, Gr = 0), certain regular features of heat trans- 
fer at forced motion become apparent. In the conditions 
of gravitational convection alone, relation (3.23) with 
account of equation (3.29) assumes the form: 

Nu = F(Pr)Gr”‘. 

Such regularity is observed in the case of heat transfer 
in horizontal layers with high Grashof numbers 
Gr 2 lo6 [22]. It is quite understandable, for only in 
the case of sufficiently intensive convection we can 
speak of a boundary layer. 

For purely electrothermal convection Gr, # 0, Gr = 
0, Re = 0, Re, is determined by: 

Rei( 1 +f7vReE/12) = GrE . 

Here two subcases are also possible: 

frvReE/12 c 1; ReE = Grk12; 

Gri’3 

for which 

NuE = F(Pr)Gri’4, 

NuE = F(h). (12/frv)1’6Gr~/6. 

In a general case 

Nur = F(Pr).(l’/fWGi$ 

? foY13 v=~)~v~=~v~ q2,rl . ( > (4.1) 
(3.32) 

(3.33) Now consider two limit flow modes 

lW)vl << rllV2vl (laminar flow) 

Iv(vWl >’ rllV2vl (turbulent flow). I^ ^ . 

realistic description of heat transfer at developed 
electrothermal convection of weakly conducting fluids 
(r/to << 1) and may be taken as a correlation for 
experimental data. 

4. CONVECTIVE HEAT TRANSFER AT 
ELECTROCONDUCTIVE CONVECTtON 

Electroconductive convection implies electric con- 
vection, whose origin is not attributed to thermal non- 
uniformities of a heat agent. If in these cases the tem- 
perature dependence of medium properties is neglected 
in the motion equations, then like in the case with 
forced motion, the electrohydrodynamic problem has 
no connection with the thermal one and is formu- 
lated as: 

y(vV)v = -VP+f+qV2v; vv = 0; v(, = 0, 

where f # f(T) is assumed to be known. Reducing this 
system to a dimensionless form : 

(v,V,)v, = --VIP1 +yfl+v:v,; 

viv,=o; Vllr=O 

where f,, is the characteristic external force gives: 

(5.54) 

where 0 < n < l/6; l/6 < m -c l/4. Analytical solutions 
[19] also lead to the relations similar to expressions 
(3.32) and (3.33). 

Figure 1 is a plot of the dimensionless experimental 
correlation [23] for heat transfer from a vertical 
cylinder (inner plates of a cylindrical condenser) to 
various fluids in an a.c. electric field. The experimental 
values fall near the straight line within 20 per cent 
(cylinder length 1 is a characteristic dimension): 

Nur = 3.85. (GrE,r. Pr,)““8 

x (12/7rv~)0”3 .(PP-~/P~,)~.~~. 

This relation agrees well with formula (3.34). It may 
thus be calculated that general formula (3.34) is a 

The solution of equation (4.1) should not depend on 
density y in the first case and on viscosity q in the 
second, which is possible if it is expressed as : 

WI) (4.2) 

where for the above cases m = 1 and m = 03, respeo 
tively. This allows the assumption that as convection 
is developing, m diminishes remaining within B5 < 
mc 1. 

It can be seen from expression (4.2) that the dimen- 
sionless complex 

/ c 13\m 

FIG. 1. Heat transfer from a vertical cylinder to fluid at free convection in an electric field. 
l-10, transformer oil; 11-14, benzene; 15, dichlorethane. 15, 8mmdia; l-14, 1.5mmdia; l-14, 
T, = 30”; l-5, TI = 40’; 15, TI = 50”; 6-10, T, = 79°C; 1, 6, 11 and 15, f?, = 10deg; 2, 7 and 12, 

0, = 20deg; 3,8 and 13,0, = 30deg; 4,9 and 14, f?, = 40deg; 5, lo,@, = SOdeg. 

(4.3) 



Convective heat-transfer enhancement by electric fields 1439 

characterizes liquid motion intensity and acts as the 
Reynolds number. And here, like in the previous 
section, the Nusselt number may be approximated by 
relation (3.23). 

We shall now consider particular cases of application 
of the formulas obtained. Let a nonuniform system, 
whose closed phase is a dielectric liquid (transformer 
oil, kerosene, etc.) and the disperse phase is liquid 
particles in emulsions or solid particles in suspensions, 
be in an external electric field. As has been pointed 
out in the general statement of the problem, such a 
system can be regarded as uniform from the hydro- 
dynamic point of view, but from the viewpoint of origin 
of free space charges (p # 0) in it the particle kinetics 
should be applied to. 

If a particle does not contact an electrode, it polarizes 
but remains electrically neutral. If it contacts an elec- 
trode, it charges, and in a steady case its electric charge 
according to equation (2.6) becomes equal to: 

4 = pdV= jVrdV= (r2-r1).qjnds, 
s s 

or, because of the normal component of the current 
density being continuous on the particle surface: 

q=j..s.(T,-rl)=e2E.s 
( > 

1-lr . (4.4) 
72 

This formula shows that the particles will gain the same 
charge as the electrode in contact with it (j) provided 
that their relaxation time r1 is less than the ambient 
relaxation time r2. On the other hand, just in this case 
we should expect a hydrodynamically unstable dis- 
tribution of the mean density of a space charge 
(VP. E < 0). That is why, to intensify convective heat 
transfer the disperse phase should have a sufficiently 
small value of 7. Otherwise (TV k= 72) heat transfer 
suppression should be observed due to hydrostatic 
liquid stabilization by Coulomb forces (Vp . E > 0). 

To define the form of relation (3.23), we should first 
find the characteristic value of forcejo, namely, 

fo = POE (4.5) 

where p. is the order of charge density which may be 
found from formula (4.4) 

po=qn=&,Esn l-2 
( > 72 

where n is the particle concentration in the vicinity of 
the heat-liberating electrode equal to : 

n = c/v, 

where C is the volume concentration of particles, VI 
is the volume of a particle. Taking into account that 
s N r2, V, N r3 (r is the characteristic size of a particle), 
the dependence of the Nusselt number of Re, is ap- 
proximated in accordance with equations (3.23), (4.3) 
and (4.5) as follows: 

When r1/r2 c< 1 and alS0 in case Of Sufficiently great 
concentrations this formula is reduced. 

In [24] an experimental investigation of heat transfer 
to dielectric liquid emulsions in uniform fields is 
described, and the data are generalized by the following 
criteria1 relationship 

&E212 
NuE = 54 2 Pr 

( > 

0.26 

(4.7) 
YV 

which is in good agreement with theoretically pre- 
dicted formula (4.6). The exponent in formula (4.7) 
being closer to its lower limit signifies that vigorous 
mixing takes place in emulsions which can easily be 
observed [24]. 

Experimental data on suspensions are generalized 
by [25] : 

NuE = 0.4tF)@36. gr2’ (4.8) 

where the exponent equal to 0.36 is also within the 
theoretically predicted limits, but it is greater than in 
emulsions which indicates less intensive electrohydro- 
dynamic effects. 

Finally, consider the case of unipolar conductivity 
when, as has already been noted, the Coulomb force 
equal j/k. With account of expressions (3.23) and (4.3): 

3 05-C-25 

Nu, = F(B). * 
(’ > kyv2 ’ 

(4.9) 

A typical example of unipolar conductivity is the 
corona discharge in gases. In order to check relation 
(4.9), heat transfer from a corona displaying wire to 
various gases (air, carbon dioxide, argon, helium) has 
been investigated experimentally in a wide range of 
pressure variation, which essentially affects ion mobility 
k and gas density y. The experimental technique is 
described in [26]. The experimental results are pre- 
sented in Fig. 2 where the solid line is described by 
the generalized relation : 

where Y = ((cI&~) + (Bl/qo) - l), X = id2/kyv2, dO,E is 
the coefficient of heat transfer within and without the 
field, q. is the specific heat flux at E = 0; I = ii is the 
total discharge current; I, d is the length and the 
diameter of the corona displaying wire; B is the 
coefficient taking into account Joule heating of a gas 
by the corona discharge [26]. In the case under con- 
sideration theoretical predictions and experimental 
data have also shown satisfactory agreement. 

As a result of investigation, a general problem of 
electroconvective heat transfer has been formulated. In 
the formulation aspect classification of problems has 
been made according to the character of electro- 
convective motive forces, and of nonuniformities of the 
relaxation time of electric phenomena in the medium 
that unambiguously define the distribution of charge 
density in low-conductivity fluids in the presence of 
electric fields, and thus a common approach to the 
problem considered has been suggested. 

The following typical nonuniformities have been con- 

sidered: thermal, mechanical and those caused by an 
electric field itself (unipolar conductivity). The main 
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FIG. 2. Generalized relationship for heat transfer in gases affected by 
corona discharge. 

attention is paid to the problems of electrothermal 
convective heat transfer because heat transfer itself is 
due to thermal nonuniformities. 

Peculiarities and regularities of the process which, 
as it turned out, depend essentially on the type of the 
fluid and the character of the external field, have been 
found theoretically. A thorough theory has been 
worked out for all of the analyzed nonuniformities 
which, in spite of its relative simplicity, embraces 
practically all the flow regimes and permits general- 
ization ofvast experimental material on convective heat 
transfer in the presence of electric fields in uniform 
media, disperse systems (emulsions, suspensions) as well 
as in gases during a corona discharge. The results 
obtained make it possible to draw a conclusion that 
the physical concepts of the mechanism of electro- 
hydrodynamic phenomena in heat transfer which are 
fundamentals of the theoretical models suggested pro- 
vide a correct picture of their character and, hence, 
may be accepted as a basis for further investigations 
and can also be used in engineering computations. 
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AMELIORATION DE LA CONVECTION THERMIQUE PAR LES CHAMPS ELECTRIQUES 

Resume-On a form& un probltme general de transfert de chaleur Clectroconvectif; les probltmes de 
cette nature sont classts suivant le type des forces actives et la nonuniformite des parametres electriques. 
Des cas types de nonuniformite, sont consider&, a savoir : thermiques, mecaniques et ceux dOs au champ 
electrique meme. Une thtorie qualitative est developpie qui recouvre toutes les configurations d’ecoule- 
ments et qui approxime les don&es experimentales sur le transfert de chaleur tlectroconvectif dans les 

milieux homogenes et disperses, et sur la d&charge dans les gaz avec effet de couronne. Les don&es 

experimentales sont en bon accord avec les previsions thtoriques. 

DIE ERHGHUNG DES KONVEKTIVEN WARMEUBERGANGS 
DURCH ELEKTRISCHE FELDER 

Znaammenfassung-Das elektrokonvektive Warmetibergangsproblem wird in allgemeiner Form beschrie- 
ben und entsprechend den treibenden Kraften sowie der Ungleichformigkeit der elektrophysikalischen 
Parameter klassifiziert. Einige typische Falle von Ungleichformigkeiten werden betrachtet, namlich 
thermische, mechanische und solche, die auf das elektrische Feld selbst zurtickzufuhren sind. Es wird 
eine qualitative Theorie entwickelt, die alle Striimungszustiinde berticksichtigt und Daten des elektro- 
konvektiven Wlrmetibergangs in homogenen und dispersen Medien sowie bei Koronaentladungen in 

Gasen korreliert. Die Versuchsergebnisse stimmen mit den theoretischen Voraussagen iiberein. 

WHTEHCM~MKA~MR KOHBEKTMBHOI-0 TEIUIOO6MEHA I-Ion 
B03JIEfiCTBMEM 3JIEKTPMYECKMX IIOJIEI? 

~OTWIIH - C+OpMyJtnpOaaHa o6qar 3aaa’la 3JleKTnOKOHBeKTAaHOrO TenJtOO6MeHa W npoeenena 
KnaCCH~HKaUHII 3ana’i n0 XapaKTepy nBWKytLWX CWI 3JleKTnOKOHBeKUHH H HeOaHOnOnHOCTefi C,,eabl 

lT0 3JIeKTpO&i3nWCKHM napaMeTnaM. PaCCMOTpeHbl TRnll’lHbIe CJty’taii HeOflHOnOLtHOCTefi: Te,,Mn- 

YeCKAe, MeXaHW’ieCKHe Ii 06yCJtOBneHHble CaMUM WleKTpWIeCKEiM nOneM; pa3pa60TaHa Ka’teCTBeHHaR 

TeOpHa, OXBaTblBatOmaR BCe PeXCAMbI TeSeHnR II nO3BOJl~loman 0606mnTb 3KCnennMeHTa,TbHble 

LlaHHble n0 3neKTpOKOHBeKTWBHOMy TenJlOO6MeHy B rOMOreHHbIX H nkiCnepCHblX CpenaX, a TaKXW IlpH 

K~~OHHOM pa3pnne B rasax. OIIblTHble naHHble cornacytoTca c TeOfTeTHYeCKllMH BbIBOnaMH. 


